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LETTER T O  THE EDITOR 
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Received 29 May 1991 

Abstract. There is known to be a close relation between the Kolmogorov-Sinai entropy 
(sum of the positive Lyapunov exponents) o f  an ergodic dynamical system and the 
algorithmic complexity of encoding trajectories of the system with respect to some partition. 
In this letter, we explicitly give an encoding which demonstrates this relation for the square 
Sinai billiard. The encoding depends on the fact that the collision criterion for the billiard 
is an example of rational approximants. The method may be used to achieve very fast 
Simulation times for the system. 

There exists a theoretical relation [ 1 J between the most efficient encoding of a trajectory 
of a dynamical system with respect to a partition and the Kolmogorov-Sinai (KS) 

entropy of the same system. Unfortunately, there is in general no prescription for 
devising this efficient encoding. Here we explicitly give a prescription for encoding 
trajectories for the square Sinai billiard, thus achieving the theoretical relation (to 
within an additive constant). This result may be used to attain very fast simulation 
times for the billiard system as we demonstrate numerically. 

In a seminal work, Brudno [ I ]  equated the measure theoretic entropy of a dynamical 
system and the algorithmic complexity of describing the symbol sequence (with respect 
to a generating partition) of almost all trajectories. More precisely, he showed 

K ( x ,  T ) = h , ( T )  (1)  

holds for pa lmost  all X E  X. Here T is a map with invariant measure p, and x is a 
point of a topological space X. The function K is defined as the lowest bound of the 
ratio of the shortest program needed to compute I bits of the symbol sequence with 
respect to some partition, divided by I (as /+m).  On the other hand, the entropy h 
of a map 7' is given by 

where I+ represents the Jacobian ofthe expanding subspace of the map [2]t. Intuitively 
speaking, the Brudno result states that the average loss of information in the system 
per iteration of the map T is equal to the average information per bit of the most 
compact coding of the trajectory. We proceed to give an encoding for the billiard 
system, that demonstrates equation (1) .  

t This expression for h is valid for very general conditions on the map T and the space X 
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L942 Letter to the Editor 

We consider the one-parameter family of dynamical systems, s s e ( R ) ,  where the 
parameter R characterizes the square Sinai billiard for each radius R, where the lattice 
constant is normalized to unity. Figure 1 depicts the trajectory of a point particle in 
the universal covering space. The point particle makes elastic collisions with the circular 
scatterers and travels linearly between collisions. Let us take a close look at the collision 
with a certain scatterer which we take to be centred at the origin. Each collision may 
be characterized by two angles, the a and 7 of figure 2. In order to find the next 
scatterer, one searches for the ‘closest’ integers M, N that satisfy 

R *ISM.NI SM.N = R sin a+ M sin 7- N cos 7 (3) 
where R is the radius of the scatterer. The quantity is the shortest distance that 
the point particle trajectory makes with a lattice site given by ( M ,  N ) .  By ‘closest’ we 
mean that of all the pairs of integers satisfying (3), the quantity M2t N’is a minimum. 

Our first assertion is that M and N for a collision event must be relatively prime. 
This is easy to prove from (3) and follows from straightforward geometric consider- 
ations. Our second observation is that the integer pair M, N (that is, N / M )  forms a 

1 
A OOOQO ooo(o0 

Figure 1. The square Sinai billiard. A point particle moving with velocity and energy 
normalized to unity collides elastically OK an array of obslacles, whore centres lie on a 
square lattice. The scatterers have radius, R, whereas the lattice constant i s  unily. 

Figure 2. Description of  coordinates (e, 7 )  which represent [he panicle immediately after 
the collision with a ~cafterer. The angle 7 defined in the text is the angle the outgoing ray 
makes with the x-axis. 
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rational approximant to tan(q), where the accuracy is determined by the order R. Thus 
we must carry out a systematic search of the rationals in order to find the appropriate 
M, N satisfying (2). 

Dueto the symmetries of the lattice, we may always assume without loss ofgenerality 
0 S t a n  7 S 1. Clearly then the collision criterion (3) implies that the integer pair ( M ,  N )  
which we seek satisfy M 3 N 3 0. Let us construct a ‘tree’ of all pairs of relatively 
prime integers as in figure 3. Each element is found by summing the coordinates of 
the left and right parent in the tree. This is exactly the same scheme as the popular 
Farey tree, where, in that scenario, the relatively prime integers are written as a fraction. 
Starting from the top, we check row by row whether a scatterer designated by an 
element of the row in the tree satisfies the condition of (3). Suppose that the (2, 1) 
scatterer does not satisfy (3). for example. The sign of S yields the choice of scatterer 
in the next row which might satisfy the collision criterion. This algorithm of left and 
right moves and checks through the tree always gives the correct scatterer for SSB. 

(1.0) (L1) 

(4 1) (5,Z) (5,3) (43) 

\. 
(8 .3 ..... ............. 

Figure 3. Motion down the tree which is used to find which is the  next scatterer in the 
billiard simulation. Each (relatively prime) integer pair represents a scatterer and the pair 
is  formed by adding the two parents of the tree as described i n  the text. 

Suppose that as we proceed down the tree we count how many times in the same 
direction (successive left or right passes through the tree) we move before we switch 
directions. This number is precisely one of the digits ofthe continued fraction expansion 
for tan q. Our rigorous assertions are then as follows. (i) The closest scatterer, (M, N ) ,  
satisfying (3) has N / M  as convergent or  intermediate convergent of the continued 
fraction expansion of tan q. (ii) If a convergent or  intermediate convergent of tan q 
satisfies (3) then so do  all larger intermediate convergents and convergents. 

Our computer algorithm expands tan q in its continued fraction expansion, then 
checks convergents until a convergent satisfies (3). Then the program backtracks 
through the intermediate convergents to find the intermediate convergent whose preced- 
ing intermediate convergent no longer satisfies (3). At that point the computer has 
found the next scatterer. 

We now argue that this representation of the motion is an encoding of the trajectory 
which is near optimal. Suppose we wish to carry out I (an integer such as 400000) 
iterations of the billiard system, and we wish to ask how the optimal encoding varies 
with the scatterer radius, R. Towards this end, we may use the Brudno result. For the 
billiard system, the entropy of the map relating the angles of successive collisions has 
been extensively analysed and is conjectured to be asymptotically (for small R )  

hbil l iard(R)= -2 log R+constant+B(R).  (4) 
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Equation (4) has been well verified numerically and is analytically partly explained 
[3] (actually we present here the most accurate numerical verification of (4)). The 
Brudno theorem, equation ( I ) ,  states that the shortest encoding length (in binary) 
should be the integer I times the entropy plus a constant independent of I. We can 
explicitly give an encoding which has a length I times (-2 In R +constant = h(R) + 
constant). Since our encoding has the same singular behaviour (for small R)  as the 
entropy and the optimal encoding, then we would say that our algorithm is ‘near 
optimal’. 

One can arrive at the near-optimal estimate of the preceding paragraph by a simple 
argument. Let us assume that the correlations between collisions in a billiard simulation 
are negligible (which is a very reasonable assumptiont particularly for small R) .  Then 
we should expect that the entropy should he the smallest amount of information 
necessary to find the next scatterer in the same procedure that we have described 
above. If there are on average ( k ( R ) )  digits of the continued fraction expansion for 
tan 7 necessary to find the next scatterer, then the amount of information contained 
in those ( k ( R ) )  digits should be ( k ( R ) )  times the entropy of the continued fraction 
algorithm, h,,,, rrac,ion. This latter constant is the average amount of information 
contained in each digit. Thus: 

- 

h b i i i i a A R )  = ho+ hcontrraction(k(R))+ B ( R ) .  ( 5 )  

Here h, is a constant independent of R. The quantity h,,,, rrrclion may be calculated 
from the continued fraction shift map, T ( x ) =  I /x-[ l /x] ,  where [ w ]  represents the 
largest integer smaller than w. This map supports the invariant (Gauss) measure on 
[O, 11: 

The entropy for this one-dimensional map is well known: 

Let us recap. We claim that there is an extremely efficient method for simulating 
the dynamics of the point particle moving through a lattice of scatterers by expanding 
one of the collision angles in its continued fraction expansion. Moreover when we 
store the history of the dynamics by keeping track of these same digits we are able to 
achieve a near optimal encoding of the trajectory. That is the complexity-entropy as 
would be calculated from this method differs from that of the Brudno complexity- 
entropy (the lower bound) by a mere constant independent of R, which is irrelevant 
in comparison with the singular term -2 In R which dominates the behaviour of both 
quantities. It is noteworthy to point out that the continued fraction expansion, for 
approximating a real number, is the best approximation scheme (in many senses [5]) 
and has positive entropy. Thus  it is entirely reasonable that the continued fraction 
encoding should be near optimal. 

Our numerical results are shown in  table 1. The averages were found by following 
a trajectory through 400 000 collisions (with double precision arithmetic). The radius 

t For any R the system is Bernoulli (see [41). 
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Table 1. The re~ults for a billiard simulation. A trajectory is followed through 400000 
collisions using double precisian arithmetic. The average number of digits a l  the continued 
fraction expansion lor tan 7 needed to calculate the successive scatterer, the average sum 
of these digits, and the various entropies are all tabulated. 

-1.0 1.343 3.04 -0.0393 0.581 201.6 
-2.0 3.189 13.44 -n.1171 0.642 277.7 
-3.0 5.122 30.35 -0.1284 0.646 357.6 
-4.0 7.054 53.86 -0.1314 0.653 437.0 
-5.0 8.998 85.54 -0.1276 0.651 517.3 
-6.0 10.941 115.89 -0.1265 0.646 598.0 

of the scatterers was varied through six decades (and can be lowered even further with 
only mild technical difficulties). If we let 

0.1 
x = log,, - 

R .. 
we find the following approximate relations. The average number of digits of the 
continued fraction expansion of the tangent of the angle 7 needed is  approximately 

( k ( R ) ) =  1.24+ 1 . 1 9 4 ~ .  (7) 

average sum of digits =3.O+7.15x+3.25x2. 

The average sum of these digits per collision are 

(8) 

The sum of the digits corresponds to the level of the tree which is reached before a 
collision takes place (figure 3). At this point, we should state how the entropy h ( R )  
is computed. One may write down an expression for J + ,  the Jacobian of the billiard 
map (which maps collision angles to collision angles) as in (2) (see for example [3,6]), 
and equate time and phase averages via the Birkhoff ergodic theorem to arrive at the 
numerical result for the entropy. We see from the table that the entropy of the billiard 
system and the entropy of the continued fraction expansion (for both of which we 
have analytical results) satisfy the following relation with the average number of digits 

Equation (9) is our main numerical result and substantiates the heuristic analytical 
argument of ( 5 ) .  We should stress that the left- and right-hand sides of (9) are 
independently determined. The analytical asymptotic form for the entropy, h (  R ) ,  of 
s s e ( R )  has been discussed first in [3], whereas h,,,,,rr..,i,, is simply a constant whose 
value has been given above. On the other hand the quantity ( k ( R ) )  has been evaluated 
for the first time in this work. Thus as R + O ,  the average number of digits from tan 7 
necessary to find successive scatterers holds a linear relationship with the billiard 
entropy divided by a known constant: the information contained in the digits of tan 7 
is equal to the information contained in the dynamics of the map, modulo a constant 
independent of R. 
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There are practical implications to our method and result. The continued-fraction 
method enables us to study the Sinai system for much smaller radii than has been 
done previously [3,6,7]. Conventional algorithms have the simulation time scale with 
the mean free time of the point particle between collisions: 

1 ?iR 
( T (  R)) = - ---- 

2R 2 

Using the same definition of x as in (9) we see that our CPU time depends in the 
following way on the scatterer radius 

CPU time=(198+80x)s. (11) 

Thus our fourfold increase in CPU time from table 1 for decreasing the scatterer radius 
by five orders of magnitude should be compared with the expected 105-fold (i.e. 
iiitiactable) inciease iii  c ~ i j  time oiie needs iii  a coiiveiiiioiia: simuiaiioii. Our method 
also immediately extends to other lattice type configurations (for example, we may 
map a twelfth sector of a triangular lattice to the eighth sector of a rectangular lattice, 
and thus apply our method). We are indeed optimistic that the continued fraction 
method should provide a useful analytical tool to study various propertiest of the 
billiard system, which has been used as a caricature of non-equilibrium systems [ X I .  

‘!%e re!ation (!I a!so may be interpreted from a practica! pein: of view. Canside: 
a straightforward algorithm for carrying out a billiard simulation such that the amount 
of time needed to simulate a fixed number of collisions scales with the mean free time, 
and hence as (1/2R) for R small as R - 0 .  Since we know the entropy behaves as 
-2 In R in this limit, then we note that the ratio of the simulation time to the entropy 
becomes arbitrarily large as R is lowered. Since the system is Bernoulli for any R (that 
is; there are no special Feigenbaum points or other subtleties), we should expect that 
the simulation time should be related to the optimal encoding length [9]$. That is, if 
we have a good way to encode the system dynamics, it is very reasonable that we 
should be able to use the same calculations that transcribes the dynamics into the 
encoding to calculate the particle trajectory (as we have done here). Thus we should 
suspect that if the simulation time and the entropy do  not behave analytically in the 
same fashion as a control parameter is varied, that there must be a better simulational 
technique. 

There are two notions of entropy discussed in this paper. The metric entropy 
(measure of randomness) may be measured by an observer outside of the system who 
measures the rate of expansion of the fibres in the phase space. The algorithmic entropy 
measures the length of the optimal encoding of the system dynamics. i n  general only 
the former is a readily measurable quantity, and not the latter. This is because there 
is in general no procedure for constructing the optimal encoding. Brudno showed 
theoretically that the algorithmic entropy is never larger than the metric entropy, and 
that in general they are equal. We have demonstrated the equality of Brudno by 
explicitly constructing the encoding. In order to do  so, we needed to identify the most 
important feature of the dynamical system: there is a slope (tan q )  which is being 
approximated by rational convergents. The relation (9) shows us that the encoding we 
have explicated above is nearly optimal. 

t For example, the lack of the existence of a diffusion constant for SSB can be shown to be related to the 
number theoretic properties of  the lattice and may therefore be analysed via a continued fraction approach. 
0 Some difficulties in identifying different types of  complexity are discussed in [91. 
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I t  is interesting that one can arrive at certain ofthe above results by merely examining 
the linear (trivial) part of the motion. It is known that the discontinuities of the system 
give a very natural way to form a partition for a dynamical system. In this system, the 
dynamics (for small R )  are essentially completely uncorrelated from collision to 
collision, so that the dynamical entropy turns out to be essentially the information 
theoretic entropy of the partition. However, the author feels that the mechanism by 
which discontinuities give rise to random behaviour has still not been completely 

for an arbitrary dynamical system, there exists no algorithm for constructing a Markov 
partition. 

The author wishes to thank C Baldwin for assistance with the figures, J C Lagarias 
and Y Oono for discussions and S L Cooper for checking the actual simulation times 

for his detailed comments. This work was in part supported by DOE grant DE-AC03-84 
ER 40182 and NSF grant DMR-84-05355 (Polymers Program, University of Illinois). 
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